General information TEMPERATURE SENSORS Pt 100 Ω

PRINCIPLE

The measurement is based on variation of resistance from metallic wires (resistors) against variations of temperature. Materials most often used are platinum and nickel.

Platinum offers a large temperature range and a good linearity. His pureness and chemical inertia guarantee a high stability of sensor itself.

Relation between platinum resistance and temperature according Standard CEI 751 is as following formula (restricted):

$$R_t = R_0 [1 + At + Bt^2 + Ct^3 (t - 100)]$$

- R_t: Sensor resistance at temperature t
- R_o: Sensor resistance at 0°C
- Temperature in °C t:

ABC: Coefficients according to previous calibration (C = 0 for positive temperature in °C)

Industrial probes and boards are based on:

= 100 Ω at 0°C R_{0} = 138.5 Ω at 100°C R100

STANDARDS & TOLERANCES

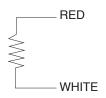
FRANCE:	NFC 42330
GERMANY:	DIN 43760
GREAT BRITAIN:	BS 1904
INTERNATIONAL:	CEI 751

Acceptance tolerances in °C:

Class A:	± (0.15 + 0.002[t])
Class B:	$\pm (0.3 + 0.005[t])$

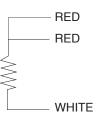
[t] is temperature value in °C.

Temperature [°C]	Acceptances tolerances Class A Class B				
	Ω	°C	Ω	°C	
-200	±0.24	±0.55	±0.56	±1.3	
-100	±0.14	±0.35	±0.32	±0.8	
0	±0.06	±0.15	±0.12	±0.3	
100	±0.13	±0.35	±0.30	±0.8	
200	±0.20	±0.55	±0.48	±1.3	
300	±0.27	±0.75	±0.64	±1.8	
400	±0.33	±0.95	±0.79	±2.3	
500	±0.38	±1.15	±1.06	±3.3	
600	±0.43	±1.35	±1.06	±3.3	
650	±0.46	±1.45	±1.13	±3.6	
700			±1.17	±3.8	
800			±1.28	±4.3	
850			±1.34	±4.6	


SETTINGS & CONNECTIONS

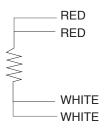
Below are three types of wiring we are used to propose:

22, Rue de la Voie des Bans - Z.I. de la Gare - 95100 ARGENTEUIL


Tél : (+33) 01 30 25 83 20 - Web : www.bamo.fr

Fax : (+33) 01 34 10 16 05 - E-mail : info@bamo.fr

2 wires

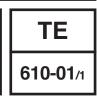

The most simple but influenced by line resistance.

3 wires

MESURES

Often used for industrial applications. This setting limits the effect of line resistance

4 wires


TEMPERATURE SENSORS

Pt 100 Ω

The most accurate setting, compensating signal errors due to line resistance and temperature variations effect on wires.

(Often used in laboratories)

610 I1 01 A

17-09-2015