INDUCTIVE TYPE CONDUCTIVITY MEASUREMENT

NaCl TOR Series

INSTRUCTION MANUAL

22, Rue de la Voie des Bans - Z.I. de la Gare - 95100 ARGENTEUIL **Tél : (+33) 01 30 25 83 20 - Web : www.bamo.fr** Fax : (+33) 01 34 10 16 05 - E-mail : info@bamo.fr

INDUCTIVE TYPE
CONDUCTIVITY MEASUREMENT
NaCI TOR SERIES
16-10-2009
364 M1 02 F

MES

364-02/1

Emitting coil PT 100 Ω Receiving coil

- 1 Emitting coil
- 2 Receiving coil
- 3 Sensor orifice
- 4 Moulded Pt 100 Ω sensor
- 5 Sensor body

Inductive type conductivity measurement

When measuring inductive conductivity, an emitting coil produces an alternating magnetic field, which produces an inducted tension in a liquid.

Thus, an electric current crosses the ions in the liquid.

It increases with the ions concentration.

This current in the liquid generates in its turn an alternating magnetic field in a receiving coil.

Finally, an inducted current is generated in the receiving coil.

The measurement of this current gives the conductivity.

To resume, considering a pure electric scheme:

The coil (1) is feeded with a constant alternating voltage.

The liquid reacts as a secondary winding of the coil (1) and as the primary winding of the coil (2).

The inducted current in coil (2) is proportionnal to the liquid conductivity.

Cell constant and setting-up factor

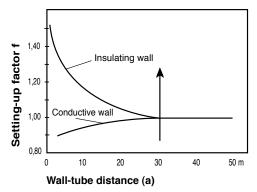
Electric conductivity of a liquid depends essentially on the ions concentration. But during the measurement, it is important to consider the setting-up conditions and the sensor geometry. All our sensors and transmitters (BAMOCOR) are calibrated to work without any re-calibration.

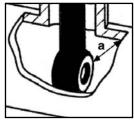
The setting-up factor is insignificant when the distance with the wall (a > 30 mm) is enough large.

For smaller distances, the setting-up increases in case of electrically insulated pipes and decreases in case of conductive pipes.

Any mounting without this minimum distance of 30 mm is to avoid.

Consequently, it is recommended to set the sensor:


- a) either in DN 50 tee
- **b)** either at the end of an immersion stick, provided the sensor is at a minimum distance of 30 mm from any wall.

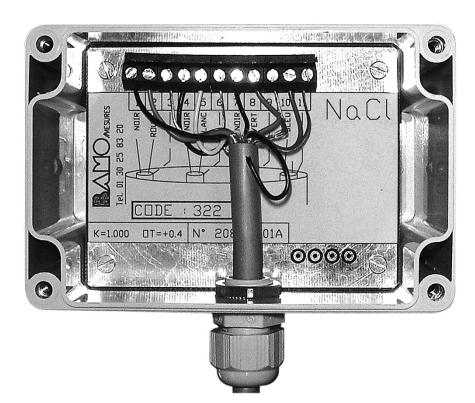

Any other positions are prohibited.

Maintenance:

The only precaution is to make sure that the sensor orifice is not blocked.

Setting-up factor as a function of wall-tube distance

INSTALLATION:


Verify that measure ring may be not beep air buble.

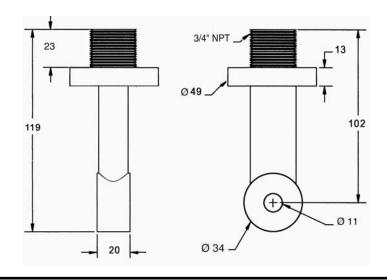
- Set the probe in circulating liquid.

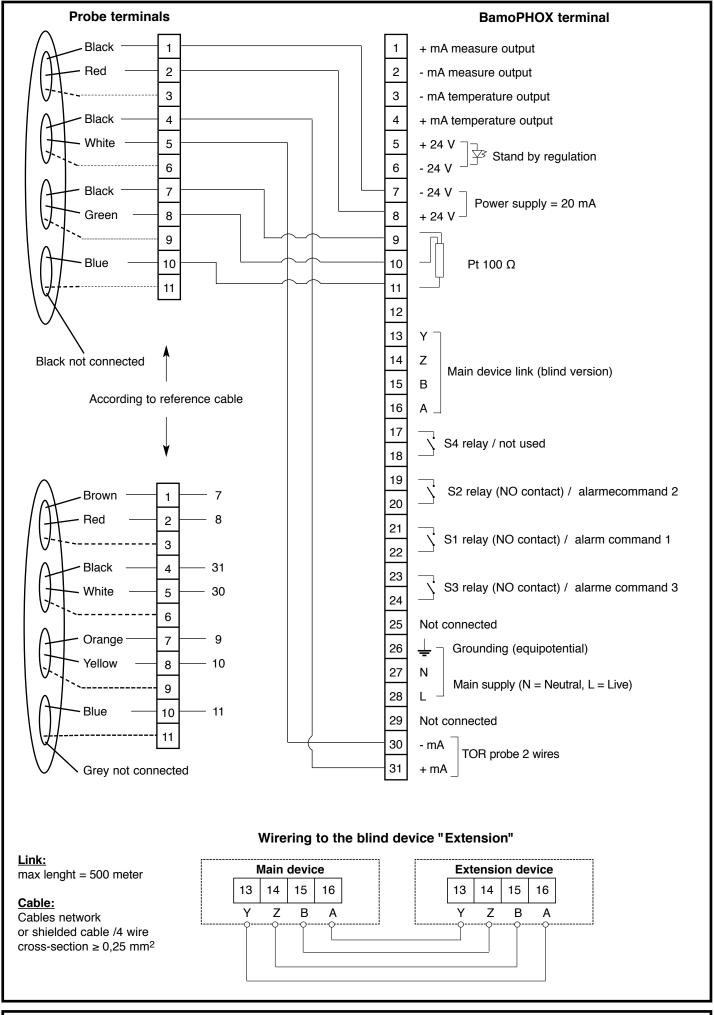
or

 Set the probe in angle position, for an immersion in a stagnant liquid.

WIRING

SENSOR CHARACTERISTICS


Measuring range : 10 μ s - 2000 mS


 $\begin{array}{lll} \text{Sensor body} & : \text{NORYL} \\ \text{Max. temperature} & : 105 \, ^{\circ}\text{C} \\ \text{Max. pressure} & : 10 \, \text{bar} \\ \\ \text{Integrated temperature sensor} & : \text{Pt } 100 \, \Omega \\ \end{array}$

for compensation

Cable length : 5 m length

SENSOR DIMENSIONS (mm)

364 M1 02 F

16-10-2009