VENTURI CHANNEL DEBITFLO

Flow rate measurement in open channel **DF 500 A**

Nominal flow rate 500 m³/h ISO 4359

INSTRUCTIONS MANUAL

Flow rate measurement in open channel

10-11-2015 **DEBITFLO** 755 M1 015 C

MES

755-15/1

1. DEBITFLO LOCATION

Please consider carefully all following requirement to choose a suitable location of the open channel DEBITFLO.

UPSTREAM SIDE SURROUNDINGS

To respect the minimum straight flow distance before the Venturi: the approach channel of the complete DEBITFLO is sufficient. However, it is better to **limit the slope of the input line at a minimal value**.

In case the slope is too high, **an undertow effect will be the consequence**, visible in the channel. In this case, the complete system will be operational only when the undertow (wave) is at a **greater distance than 30 times the highest water height of the DEBITFLO** (see the flow rate table at 100%).

If the flow input line is not in the axis of the channel axe or through a valve, it is necessary to built up a longer approach channel.

When the approach channel width is lower than the input line, it is necessary to built up a restriction input line in order to avoid turbulences.

The best solution is to set up a basin for tranquilization just before the approach channel, larger than the DEBITFLO and an input flow through a vertical pipeline.

DOWNSTREAM SIDE SURROUNDINGS

The most important is to procure a free draining.

The DEBITFLO may never get a drop pressure back due to a bad drain off.

So, do not install a pipeline with a smaller diameter than the diameter of input line. Better to choose a really greater diameter and to design it with the highest possible slope value

Never the height of downstream is over 80% of the upstream height.

The most convenient when it is possible is to let the flow output falling freely in a cataract way.

2. LEVELLING THE DEBITFLO

DIRECTION

- Install the DEBITFLO with its axis in the same axis of the flow.

RAISING

- The bottom of the channel should be at the height of the input line bottom.

LEVELLING

- Please use a bubble indicator to assure a perfect horizontal installation.

3. CARES FOR BEDDING

Before bedding the DEBITFLO in concrete, follow these recommendations to avoid any deformation inside the channel and unbalanced channel parts.

- The strengthening pieces are sufficient to keep optimal all dimensions of the channel during stocking and transport.

- These strengthening pieces are not designed to resist with the pressure due to materials (concrete, sand, foams, etc.) during bedding.

- Therefore, it is necessary to adapt bracing device, internal wood struts to balance the pressure from bedding materials and avoid restrictions/surface defects in the channel.

- Until all the materials are stabilized, dried, keep all the original strengthening pieces in place.

- Steel frameworks are of a good help for huge channels: drill into the external wood strengthening pieces to fix the channel to the structure.

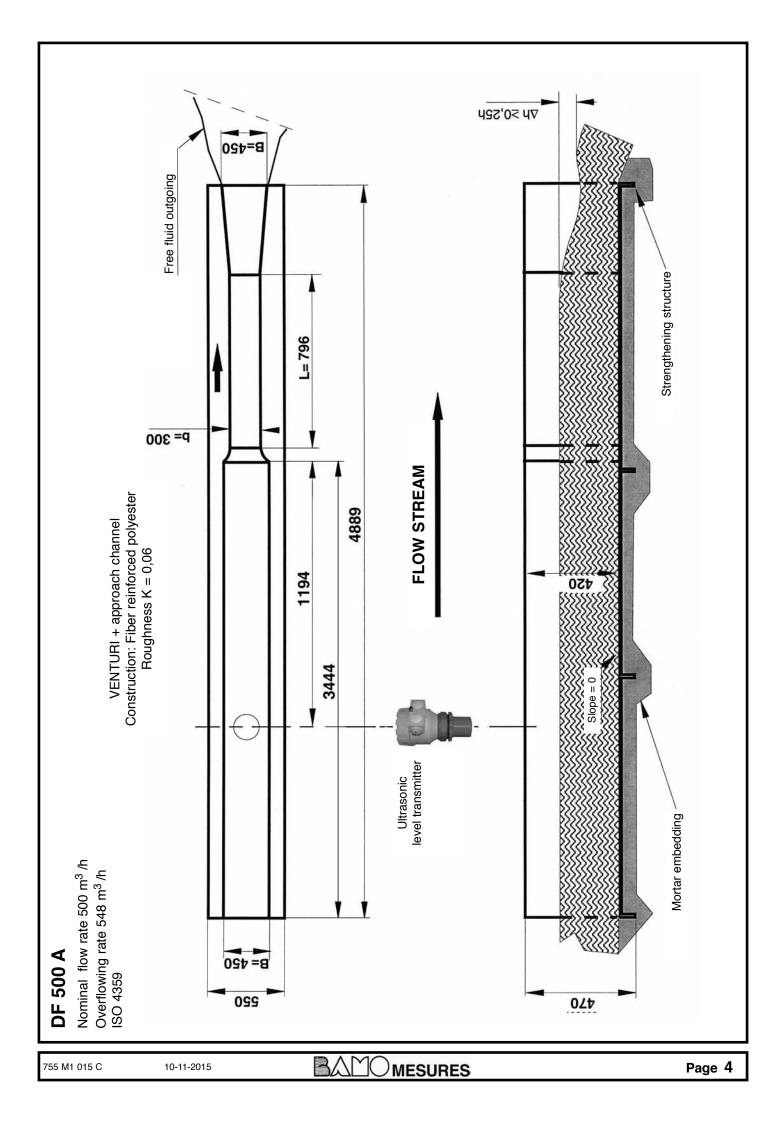
- First bedding the ends of the channel and bottom of each strengthening pieces assure to keep a good position when filling is done with sand or weak concrete.

No respect of these recommendations will cancel the manufacturer warranty.

UPSTREAM FINISHING

Coupling of DEBITFLO and input channel should be done of concrete, avoiding sudden changes of dimensions.

DOWNSTREAM FINISHING


Coupling of DEBITFLO and output line should be done of concrete, keeping a freely falling.

4. FLOW RATE TABLE

HEIGHT %	HEIGHT mm	FLOW RATE I/S	FLOW RATE m ³ h
5,0	19	1,1	4,1
10,0	39	4,0	14,4
15,0	59	7,7	27,8
20,0	79	12,1	43,6
25,0	98	16,8	60,5
30,0	118	22,3	80,3
35,0	138	28,3	101,9
40,0	158	34,7	125,1
45,0	177	41,3	148,6
50,0	197	48,5	174,7
55,0	217	56,2	202,4
60,0	237	64,2	231,2
65,0	256	72,2	259,8
70,0	276	80,9	291,2
75,0	296	89,9	323,6
80,0	316	99,2	357,2
85,0	335	108,4	3901
90,0	355	118,3	425,7
95,0	375	128,4	462,4
100,0	395	139,0	500,3

5. **DIMENSIONS**

Throat width 300.0 mm The drawing is on the next page. b = Channel width B = 450.0 mm Venturi length L = 796.0 mm Raised bottom P = 20.0 mm Roughness Ks = 0.06 mm Maximal height = 395.0 mm Nominal temperature = 20.0 °C

